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1. INTRODUCTION

The well-known Dirichlet-Jordan convergence criterion for Fourier series
states that the trigonometric Fourier series of a 2n-periodic functionJhaving
bounded variation converges to 1{f(x +0) +J(x - O)} for every x and this
convergence is uniform on every closed interval on which J is continuous
[14, Theorem 2.8.1].

A generalization of this criterion was given by Hardy and Littlewood who
proved the following:

THEOREM 1.1 [11]. Let 1 ,,;;; p < 00. Suppose J is a 2n-periodic Junction
in U[-n, n] and

(" IJ(x +h) - J(x)I P dx = 0(1 hI), h > O. (1.1 )

Then the trigonometric Fourier series oj J is convergent to J at every
Lebesgue point ojJ.

To demonstrate the fact that this is a generalization of the Dirichlet-
Jordan convergence criterion, Hardy and Littlewood gave the following
characterization of the functions of bounded variation:

THEOREM 1.2 [10]. A 2n-periodic Junction J is equivalent to a Junction
oj bounded variation if and only ifJ satisfies (1.1) with p = 1.

Analogues of the Dirichlet-Jordan convergence criterion are also known
for series in polynomials orthogonal with respect to certain weights with
support in [-1, 1] ([2, 3D. The main difficulty here is the lack of an explicit
closed expression for the Dirichlet kernel as in the case of trigonometric
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Fourier series. When the support of the weight function is unbounded, it is
sometimes necessary also to find the "right" substitute for functions of
bounded variation.

In 1974, Freud [4] proved an analogue of the Dirichlet-Jordan criterion
for series in polynomials orthogonal with respect to weight functions
supported on the whole real line. He considers weights of the form wQ(x) =

exp(-Q(x)), where Q satisfies certain technical conditions. We denote by
{Pk} the system of polynomials orthonormal with respect to w~. The
orthonormal Fourier series off is then defined by

where

ak(W~,J) := fW f(t)Pk(W~, t) w~(t) dt.
~W

Let the partial sums of (1.2) be denoted by Sn:

(1.2)

(1.3)

n~l

sn(f, x) := sn(w~,J;x) := L ak(w~,f)Pk(w~, x). (1.4)
k=O

Freud's result can now be described as follows:

THEOREM 1.3. Suppose f is continuous on R, is of bounded variation on
every compact subinterval of R and satisfy

fW wQ Idfl < 00.
~W

Then

(1.5)

uniformly on R. (1.6)

In particular, sn(w~,f,x) converges uniformly on compact subsets ofR.

The main objective of this paper is to give a characterization of the
conditions of Theorem 1.3 in terms of a modified modulus of continuity
which was found suitable in the theory of weighted polynomial approx
imation. [5, 6, 8]. This characterization will be analogous to Theorem 1.2.
We shall also demonstrate how Freud's proof of Theorem 1.3 can be
modified to give a generalization of Theorem 1.3 similar to Theorem 1.1.
Hardy and Littlewood used deep function theoretic techniques in the proof of
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their theorems. We use instead the theory of weighted polynomial approx
imation.

The main results are stated in the next section and the proofs are given in
Section 3.

2. MAIN RESULTS

We consider weight functions of the form wQ(x) := exp(-Q(x)), where Q
satisfies the following conditions:

(1) Q is an even, convex function on R, continuously differentiable on
(0,00).

(2) Q'(x)~ 00 as x~ 00.

(3) There exists a constant A 0 such that for every 15, 0 < 15 <A0' one
can find the least positive number x~ such that

(2.1 )

We assume that

(2.2)

for some constant C1 •

Examples of such weight functions include exp(-I x 1a), a > 1. In [7],
Freud introduced an expression for the first order modulus of continuity
suitable for the study of polynomial approximation with such weight
functions. Let 1~ P ~ 00, wQf E U(R), 0 < 15 <A o and set

w(U, Q, f, 15):= sup II wQ(x + t)f(x + t) - wQ(x)f(x)llp
It I <~

+ 1511 Q.5Cx ) wQ(x)f(x)llp ' (2.3)

where

Q.5Cx) := min{£5- 1
, IQ'(x)ll·

Then the first order modulus of continuity off is defined by

n(u, Q, f, £5):= inf w(U, Q, f - a, £5).
aeR

(2.4 )

(2.5)

This modulus of continuity enables us to characterize functions of bounded
variation in the sense of Theorem 1.3.
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THEOREM 2.1. (a) If f is a function having bounded variation on
compact intervals and if

then, for every £5, 0 < £5 <A 0'

fwQ Idfl < 00, (2.6)

(2.7)

(b) Conversely, if (2.7) holds then f is almost everywhere equal to a
function having bounded variation on compact intervals and (2.6) holds.

To state our results concerning the convergence of orthogonal polynomial
series, we need to impose more restrictive conditions on the weight function.
Individual results will actually be true under slightly weaker conditions, but
the following conditions certainly suffice.

(A) Q is even, convex and is in C 2(0, (0).

(B) Q" is increasing on (0, (0).

(C)
xQ"(x)

1~ c2 ~ () ~ c3Q'x
(2.8)

for some constants c2 and c3 •

All of these conditions are satisfied by wQ(x) = exp(-Ixl a
) when a? 2.

We can now state the analogue of the Hardy-Littlewood criterion
(Theorem 1.1).

THEOREM 2.2. Let 1~ P < 2,f be continuous on R, wQfE U(R) and

f2(U, Q,f, £5) = O(£5 1
/P).

Then

(2.9)

as n ---> 00 (2.10)

where sn(f) is defined in (1.4).
Ifp? 2, and

f2(U, Q,f, 15) = o(t5(P-I)/P)

then (2.10) holds.

We believe that if P? 2, (2.9) would not, in general, imply (2.10).

(2.11 )
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3. PROOFS

We adopt the following notation. A ~ B means that there is a positive
constant c independent of all obvious variables such that A ~ cB. A ~ B
means that A ~ Band B ~ A.

Proof of Theorem 2.1(a). Let g(x) := f(x) - f(O), h > O. Then

() IwQ(x + h) g(x + h) - wQ(x) g(x)1 dx

= tOO If+h

[-Q'(t)WQ(t)g(t)dt+ wQ(t)df(t)] dx

~too [f+h Q'(t)wQ(t)lg(t)ldt+ f+h WQ(t)ldf(t)l] dx

= tOO Q'(t) wQ(t) I g(t)1 (aX(O,t-hl dx dt

00 t

+fo wQ(t) taX(O,t-hl dx Itlf(t)1

~ hT + h tOO wQ(t) Itlf(t)l,

where

T:= tOO Q'(t) wQ(t) I g(t)1 dt

= (J Q'(t) wQ(t) If~ df(u) i dt

00 t

~ t Q'(t) wQ(t)t Idf(u)1 dt

= fo
oo

Uu
oo

Q'(t) wQ(t) dt) Idf(u)1

= tOO wQ(u) Idf(u)l.

Thus

(3.1)

(3.2)

foo IwQ(x + h) g(x + h) - wQ(x) g(x)1 dx ~ 2h500

wQ(u) Idf(u)l. (3.3)
o 0
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A similar estimate can be obtained also when the integrals extend on
(-00,0]. Then, if h >0,

ro IwQ(x + h) g(x + h) - wQ(x) g(x)1 dx ~ 21hl Joo wQ(u) Idf(u)l. (3.4)
-OCJ ~OO

Translation invariance of the integral then gives (3.4) for h <0 as well.
Similarly, from (3.2), we get

IIQ~wQgIII~IIQ'wQglll~JOO wQ(t)ldf(t)l. (3.5)
-00

From (3.4), (3.5), (2.3), (2.5) we have

il(L I, Q,f, 0) ~ w(L I, Q, g, 0) ~ 30 foo wQ(t) Idf(t)l. I (3.6)
-00

To prove Theorem 2.1(b), we need some preliminary results. For fJ <A o'
define xb by (2.1). Set

and

,/, ( ).= \ wQ(x)f(x)
'l'b X. /0

if Ixl ~Xb
otherwise

(3.7)

8
'l'b(X):=fJ-1WQ1(X)!a ¢b(x+t)dt. (3.8)

Then, clearly, there is a set E such that R\E is a set of measure zero and

as fJ -+ 0 if x E E. (3.9)

Moreover, we have the following estimates [7]:

IlwQ'I'~111 ~ o-lil(L', Q,f, 0) ~ M,

II WQ('I'b - f)111 ~ il(L I, Q, f, fJ) ~ OM,

where

M:= sup fJ-'il(L', Q,f, fJ).
O<b<A o

n

L wQ(xk) If(xk) - f(xk_I)1 ~ M.
k=1

(3.10)

(3.11 )

(3.12)

(3.13 )
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Proof. Choose J >0 so small that

i = 0,1,... , n. (3.14)

This is possible in view of (3.9). By replacing wQ by an equivalent weight if
necessary (cf. [9 J), we may assume without loss of generality that W Q is
decreasing on (0, (0). Then

n

L wQ(xk) If(xk) - f(xk-I)I
k=1

n

~ M + L wQ(xkHlf(xk) -lfI6(xk)1 + IlfI6(Xk) -lfI6(Xk- I )1
k=1

(3.15)

Using (3.14), (3.10) and the fact that wQ is decreasing, we get from (3.15)
that

n

L wQ(xk) If(xk) - f(xk-I)I
k=1

n Xk

~ M + L wQ(xk)J IlfI~(t)1 dt
k=1 Xk_1

n Xk

~ M + L J wQ(t) IlfIbCt)1 dt ~ M. I (3.16)
k= 1 Xk

Proof of Theorem 2.I(b). In view of Lemma 3.1, f is of bounded
variation on En [0, R] for every R > O. It follows by a standard argument
(cf. [1, p. 73 J) that f is almost everywhere equal to a function having
bounded variation on compact subintervals of [0, (0). Similar argument
gives the same result for (-00,0]. Hence f is almost everywhere equal to a
function having bounded variation on compact subintervals of R. We shall
identify f with this function. Let

VeX) := (ldf(t)l. (3.17)

Suppose 0 ~ X o~ ... ~ xn are arbitrary and e > 0 is given. Find xk ~

x k •O~ ... ~ X k + 1 (k = 0, 1,..., n - 1) such that for each k = 0, 1,... , n - 1

mk

L If(xk,r) - f(xk.r-I)I ~ V(xk+ I) - V(xk) - e. (3.18)
r=1
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Then, using Lemma 3.1,

n

L WQ(Xk)[V(Xk) - V(Xk_1)]
k~1

n n mk __ l

<,10 L WQ(Xk) + L L wQ(xk)I!(Xk-l.r)-!(Xk-l.r-I)1
k~1 k=1 r~l

n n mk-I

<,10 L WQ(Xk) + L L WQ(Xk_I)I!(Xk_l.r)-!(Xk_l,r_I)1
k~1 k=1 r=1

145

n

~ 10 L WQ(Xk) +M.
k=l

Since 10 > 0 was arbitrary,

n

L WQ(Xk)[ V(Xk) - V(Xk_l)1~ M.
k=1

Using the continuity of wQ ' it is now elementary to see that

() wQ Id!1 ~ M.

(3.19)

(3.20)

(3.21 )

Similarly, the integral over (-00,0] can be estimated, thus completing the
proof. I

In the remaining part of the paper we assume the stronger conditions on
the weight function stated in Section 2. For wQ! E U(R) and integer n? 1,
set

(3.22)

(3.23)

where the inf is taken over all polynomials P of degree at most n. The class
of all such polynomials will be denoted by 7rn • We need to recall a few facts
which we summarize in the following lemma.

LEMMA 3.2. Let 1 <, p, r <, 00, 0 < a <, 1, wQ! E U(R) and n (an
integer) be ? 1. Then

(a) [5]

(3.24 )
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(b) [13]

Ilf - sn(f)112 = en(2,f);

(c) [12] if PE 'Jrn, then

(
n ) Illp-I/rl

II wQPlir ~ qn II wQPllp ,

(3.25)

(3.26)

where qn is the least positive solution of the equation xQ'(x) = n:

(d) [5]

(e) [12] if

and

P:= a -I ~ -+I>0,

then
n(L', Q,f, c5) = O(c5 ll );

(3.27)

(3.28)

(3.29)

(3.30)

(f) part (e) is true if 0 in (3.29) and (3.30) is replaced byo.

The proof of part (f) is almost identical to that of part (e). The proof of
Theorem 2.2 is now simple; in fact, it is the same as Freud's original proof of
Theorem 1.3.

Proof of Theorem 2.2. In view of (3.24) we need only to estimate
vn(f) - sn(f). Since this is in 'Jr2n , we get using (3.26), (3.24), (3.25),

~

~ ~~ II wQ(vn(f) - sn(f»lb
qn

rn
,,;;; ~- [Ilf - vn(f) wQI12 + II wQ(f - sn(f»112]

qn

~ J. n 6 n(2, f). (3.31)
qn
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Let m := [n/2]. Then vm(f) E 1rn and if 1~ p < 2,

II wQ(vn(f) - sn(f))lloo
r----
In

~ V-II wQ(f - vm(f))llz
qn

In view of Lemma 3.2(e), (d) and the fact that [5]

we get

II wQ(vn(f) - sn(f))lloo ~ [em(00,1)] l-
P

/Z.

Hence, if wQJE Co(R), (3.34) and Lemma 3.2(a) imply (2.10).
In the case when p ~ 2, (2.11), Lemma 3.2(f), (d) and (3.31) give
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(3.32)

(3.33 )

(3.34)

II wQ(vn(f) - sn(f))lloo -. 0

Thus, (2.10) holds as before. I
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